We consider a volume
\(V\) with surface
\(S\) consisting of a small cube of side length
\(\delta\text{,}\) as shown in
Figure 7.5.1. We apply the Reynolds Transport Theorem to the fluid in the cube:
\begin{equation*}
\dd{}{t} \iiint_{V(t)} f \, \de{x} \, \de{y} \, \de{z} = \iiint_{V(t)} \left[
\pd{f}{t} + \nabla \cdot (f\bu)\right] \, \de{x} \, \de{y} \, \de{z},
\end{equation*}
where \(f\) is any function, a vector or a scalar.
Setting
\(\bf=\rho\bu\) equal to the momentum per unit volume in the fluid, the integral equals the momentum of the fluid in the cube, and the time derivative is the rate of change of momentum, which is the total force acting on the fluid in the cube.
The total force equals the sum of the surface forces and body forces. The body force equals the force of gravity: \(\rho V\bg\text{.}\) The surface forces are an integral:
\begin{equation*}
\iint_S\btau\,\de S=\iint_S\bsigma\bn\,\de S;
\end{equation*}
and we sum the contributions over the six faces in pairs:
-
Front and back faces: The contribution on the back face (\(\bn=-\bi\)) is
\begin{equation*}
-\delta^2\left.\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right)\right|_{x=x_0}
\end{equation*}
and on the front face (\(\bn=\bi\)), it is
\begin{equation*}
\delta^2\left.\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right)\right|_{x=x_0+\delta}.
\end{equation*}
The sum of these is
\begin{equation*}
\delta^2\left.\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right)\right|_{x=x_0+\delta}
-\delta^2\left.\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right)\right|_{x=x_0}
=\delta^3\pd{}{x}\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right).
\end{equation*}
-
Left and right faces: In a similar way, the contribution is
\begin{equation*}
\delta^3\pd{}{y}\left(\begin{array}{c}
\sigma_{21}\\\sigma_{22}\\\sigma_{23}
\end{array}\right).
\end{equation*}
-
Bottom and top faces: The contribution is
\begin{equation*}
\delta^3\pd{}{z}\left(\begin{array}{c}
\sigma_{31}\\\sigma_{32}\\\sigma_{33}
\end{array}\right).
\end{equation*}
Hence, the surface force is given by
\begin{equation*}
\delta^3\pd{}{x}\left(\begin{array}{c}
\sigma_{11}\\\sigma_{12}\\\sigma_{13}
\end{array}\right)
+\delta^3\pd{}{y}\left(\begin{array}{c}
\sigma_{21}\\\sigma_{22}\\\sigma_{23}
\end{array}\right)
+\delta^3\pd{}{z}\left(\begin{array}{c}
\sigma_{31}\\\sigma_{32}\\\sigma_{33}
\end{array}\right)
=\delta^3\nabla\cdot\bsigma,
\end{equation*}
Hence
\begin{equation*}
\rho V\bg+\delta^3\nabla\cdot\bsigma
=\iiint_{V(t)} \left[\pd{(\rho\bu)}{t} + \nabla \cdot (\rho\bu\bu)\right]\,\de{x}\,\de{y}\,\de{z},
\end{equation*}
Since the cube is small, the right-hand side is approximately the volume \(V\) times the integrand evaluated at a point in \(V\text{.}\) Dividing by \(V=\delta^3\) gives
\begin{equation*}
\rho\bg+\nabla\cdot\bsigma
=\pd{(\rho\bu)}{t} + \nabla \cdot ((\rho\bu)\bu).
\end{equation*}
Since \(\rho\) is constant,
\begin{equation*}
\rho\bg+\nabla\cdot\bsigma
=\rho\pd{\bu}{t} + \rho\bu\cdot\nabla\bu+\rho(\nabla\cdot\bu)\bu.
\end{equation*}
Since the fluid is incompressible, we have \(\nabla\cdot\bu=0\text{,}\) and, rearranging, we obtain the Cauchy equation:
\begin{equation*}
\rho\left(\pd{\bu}{t} + \bu\cdot\nabla\bu\right)
=\nabla\cdot\bsigma+\rho\bg
\end{equation*}